
2902 

(2) E. P. K. Hade and C. Tanford, J. Am. Chem. Soc, 89, 5034 (1967). 
(3) These references offer a critical evaluation of many of the pertinent data: 

(a) F. Franks, "Hydrogen Bonded Solvent Systems", A. K. Covington and 
P. Jones, Ed., Taylor and Francis, London, 1968, p 42; (b) A. Holtzer and 
M. F. Emerson, J. Phys. Chem., 73, 26 (1969). 

(4) H. Ruterjans, F. Schreiner, V. Sage, and Th. Ackermann, J. Phys. Chem., 
73,986(1969). 

(5) T. S. Sarma and J. C. Ahluwalia, Trans. Faraday Soc, 67, 2528 (1971). 
(6) P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers, J. Chem. Ther-

modyn., 3,631 (1971). 
(7) P. R. Philip, G. Perron, and J. E. Desnoyers, Can. J. Chem., 52, 1709 

(1974). 
(8) O. D. Bonner and P. J. Cerutti, J. Chem. Thermodyn., 8, 105 (1976). 
(9) J. A. Gordon and W. P. Jencks, Biochemistry, 2, 47 (1963). 

(10) P. R. Philip and J. E. Desnoyers, J. Solution Chem., 1, 353 (1972). 
(11) R. L. Kay, T. Vituccio, C. Zawoyski, and D. F. Evans, J. Phys. Chem., 70, 

2336(1966). 

The conformational properties and especially the internal 
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quantum chemical methods, since they concern changes of a 
few kilocalories per mole in a total energy of 105 to 107 kcal/ 
mol. A theoretical approach such as the Hartree-Fock ap­
proximation provides the accurate values for the internal 
rotation barriers in numerous molecules;2 the barrier is cal­
culated by subtracting the total energies evaluated for each 
appropriate conformation of the molecule, but this procedure 
itself provides no information about the origin of the bar­
rier. 

The explanation of the sources of such barriers is a very in­
teresting problem. In the past many different theoretical ap­
proaches have been carried out. Among them, Lowe3 quali­
tatively explained the barriers about single bonds, comparing 
the results obtained with the following type of approaches: i.e., 
(I) using a decomposition of the total energy change with 
rotation into nonlocal physical components,4 (2) using delo-
calized or canonical molecular orbitals, and (3) using localized 
MO's. 

Approach 1 presents the following serious defects: (a) the 
qualitative description of a barrier (as repulsive or attractive 
dominant) can change depending on whether the calculation 
is carried out in the rigid-rotor or the geometry-optimized 
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calculated barrier from attractive to repulsive dominant.4-7 

Moreover, this approach does not allow a direct relation with 
the local geometry changes of the nuclear skeleton. With re­
spect to approach 2, the delocalized nature of the canonical 
Hartree-Fock orbitals does not allow us to analyze the phe­
nomena explicitly in terms of bonds or atomic interactions. 
Hence, we think that a local analysis in terms of local contri­
butions is more promising; it may refer to atoms or to 
bonds. 

The expression of the Hartree-Fock energy in the LCAO 
approximation allows a partition in one-, two-, three-, and 
four-atom terms; it is reduced to one- and two-atom contri­
butions in the CNDO approximation.8 Section IA briefly re­
calls this partition and illustrates its limitations in the analysis 
of a few energy conformational changes.9-1 ' The important 
contributions to the energy changes sometimes concern mon-
atomic or diatomic contributions between atoms whose relative 
positions are unchanged during the conformational change. 
Such contributions may come from some changes in the density 
matrix which are not explained. 

In section IB, one considers the analysis of SCF results, re­
ferring to bonds (use of bond-like SCF localized MO's12). This 
methodology gives very interesting information about the local 
origin of the barriers, showing the dominant role of the tails 
of the SCF-MO's on vicinal groups, as well as the important 
role of the monoelectronic part of the CNDO (or INDO) 
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Table I. Bonded and Nonbonded Atomic Contributions to the Total Energy of F3NO0 

/.ONF AEtot AE(O) A£(N) 3Aff(F) Ag(N-O) 3Ag(N-F) 3Ag(O-F) 3Ag(F-F) 

1187110° -13.04 4^30 SAJ -8.50 (103 -13.15 -12.19 11.30 

o Reference 10. Values in table given in kcal/mol. 

Hamiltonian. This kind of analysis may be performed to a high 
degree of accuracy upon the wave function (and the tails of 
localized MO's),13 but it is not satisfactory to explain the 
physical origin of the tails (i.e., through space derealization 
or step by step derealization processes). 

The local approach of Sovers et al.14 avoids the SCF step. 
They used a crude wave function built with fully localized 
MO's on the bonds. This ab initio method represents an a priori 
analysis; it gives information about the role of short-range 
repulsion effects in the ethane and methanol barriers.1415 This 
zeroth description might be improved through an appropriate 
perturbation expansion. 

A further local decomposition in terms of one-bond, two-
bond, three-bond, etc., effects is possible.1617 The methodology 
proposed in this paper to the study of conformational problems 
constitute a construction of an additive structure of the energy 
in terms of one-bond, two-bond, etc., contributions, using lo­
calized bond MO's and a perturbation expansion. It is briefly 
described in part II. Some applications are presented in part 
III. The analysis of internal rotation barriers has been done 
within a semiempirical scheme (differential PCILO method18) 
using a CNDO Hamiltonian. 

Our approach constitutes a many-body construction of the 
energy (and energy change) in terms of completely localized 
fragments and their interactions, instead of an a posteriori 
analysis of the exact or refined variational wave function. It 
allows a better understanding of some paradoxical results 
obtained with the atom decomposition, it confirms directly and 
explicitly the conclusions of England et al. about the internal 
rotation barriers,12-19-20 and it allows us to follow the building 
up of the tails of the MO's from fully localized MO's. 

Results and Discussion 

IA. An Atomic Partition of the Total Energy. A natural 
partition of the total molecular energy for a closed-shell system 
within the LCAO-MO scheme is implicitly given by the energy 
decomposition in terms of atomic integrals. The energy of a 
Slater determinant (for instance the SCF Slater determinant) 
is written as: 

ET=Y. P,MM„ + xk E P^PxAi^M) - xk (nKw)] 

+ E E Z A Z B K A I T 1 (1) 
A <B 

where indices /u, v, X, a refer to the atomic orbitals and A and 
B to the nuclei, P1111, H ̂  are respectively the density matrix 
elements and the matrix elements of the core Hamiltonian with 
respect to atomic orbitals (kinetic operator and attraction 
operator by the nuclei), Z\ and Z B are the atomic charges of 
atoms A and B and RAB the internuclear distance. 

It is possible in general to express the terms of eq 1 in one-
atom, two-atom, up to four-atom contributions according to 
the type of matrix elements H11, and (ixv,\a). This general 
decomposition has been frequently used within the CNDO 8 

assumptions for the atomic integrals as suggested by Pople and 
Beveridge. Every term in the CNDO total energy expression 
is associated with one or two atoms because of the ZDO hy­
pothesis, so that an energy breakdown into monatomic and 
diatomic contributions is possible,8 

£ T = £ « A + E 6AB (2) 
A A<B 

where 

tA = E P1111U1111 + V2 E E (,Pw?,* ~ V2 / V 2 ) 7 A A (2a) 

and 

«AB = E E ( 2 / V V - V2 ^
2 T A B ) + (Z A Z B / ?AB" 1 

- ^ A A K A B - P B B ^ B A + PAA-PBBTAB) (2b) 

where 2M
A means sum over all orbitals on A, U1111 = (M| — 

V2
1V2 — KA|M) is the energy associated with the orbital n in the 

bare field of the core of its own atom, 7AB = (mj.,vv), ixe A and 
v 6 B, /3M„ is the nondiagonal element of the one-electron 
Hamiltonian and is supposed to depend only on A and B, PAA 
= 2^A P111x is the total electron density associated with atom 
A, and KAB is the attraction of one valence electron on A by 
the core of B. This energy partitioning has been used by La-
barre and co-workers for numerous conformational studies9- ' ' 
with the use of an analogous decomposition, 

£\ot = Eb + £"nb (3) 

with 

Eb = E «A + E «AB (A and B bonded) (3a) 
A A<B 

£nb = E ÂB (A and B nonbonded) (3b) 
A<B 

One may hope that the energy variations will come from 
pairs of atoms whose relative positions have been modified 
during the conformational change. Labarre and co-workers 
actually found in general in their rotation barriers analysis that 
the dominant factor in the variation of the total energy with 
a change of conformation is A£nb-

In Table I one reports the results obtained by Labarre et al. 
in the analysis of the total energy of ONF 3 referring to the 
stabilization of the energy with, respect to the ZONF angle, 
with the CNDO/2 energy partitioning." 

The AEnb contribution (3A£(0-F) + 3Af(F-F)) is only 
-0.89 kcal/mol. The bonded interactions 3AZs(N-F) are much 
more important, and the atomic contributions are far from 
being negligible. 

In the conformational analysis of (CH 3 ) 2 S0 2
9 referring to 

the variation of the energy as a result of mutual rotation of the 
two methyl groups, they always found with the bicentric energy 
partitioning a contribution to the variation in the total energy 
of 70% from the single sum, 1,E(S-H), of the spatial inter­
action terms between sulfur and the six hydrogens. On the 
contrary, the contribution of terms which change during the 
rotation, that is, 2 £ ( 0 - H ) + 2 £ ( H - H ) is only 30%. 

The atomic and bonded contributions, which we hoped to 
be negligible, sometimes play the leading role in the confor­
mational property. Since the corresponding atoms do not 
change their relative position, the integrals are constant and 
the variation of the energy contribution must come from a 
change in the density matrix elements appearing in eq 2. Un­
fortunately, the variations of the density matrix elements 
cannot be explicitly derived from the geometry change, since 
they result from the iterative procedure and the mystery about 
the energy change is converted into a mystery about the density 
matrix variations. 

Rojas I Analysis of Conformational Properties of Molecules 



2904 

IB. SCF Energy Partition in Terms of Bonds. If one wants 
to derive an energy partition in terms of bonds, one faces im­
mediately a difficulty concerning the nuclear repulsion energy 
and the nuclear attraction operator, since both are expressed 
in terms of atoms. In order to obtain a homogeneous partition 
of the total energy in terms of one-bond and two-bond contri­
butions, one must do a partition of the nuclear charge into bond 
nuclear distributions. 

If Z A is the charge of atom A (total charge in an ab initio 
case) the elementary charge q,A = Z A / ( « V A + 2noA), where 
n vA represents the number of bonds involving A and « D A the 
lone pairs on A. Each chemical bond will have one q,A charge 
and a lone pair, Iq1-

A (for a neutral atom q,A = 1). The bond 
nuclear charge for a neutral molecule will be a (+1 •••+1) dis­
tribution on the two atoms of the bond, which compensates the 
two-electron distribution //'. In that manner, the nuclear field 
is decomposed into bond-nuclear fields, 

where 

E Z A / / - A = E hi 

h, = (qiA/rA) + ( 9 , B / r B ) 

for a bond ; and 

hi = 2q/A/rA 

(4) 

(4a) 

(4b) 

for a lone pair on A. 
The nuclear repulsion energy can be written as a sum of 

nuclear repulsions between nuclear bond distributions, 

£N = E I % ^ = E Nn + EE N1J (5) 

where 

for a bond / and 

A <B RAB / i <j 

Na = qiAqiB/RAB 

Nu = 0 

(5a) 

for a lone pair. 
The off-diagonal terms Ny represent the repulsion between 

the two nuclear charges of bond i with the two nuclear charges 
of b o n d / 

The ab initio energy can be expressed in terms of bond en­
ergy and bond interaction energy, 

E = E S, + E E S11 (6) 

with 

Si = 2< i |v 2 / 2 | /> + 2 < I | A / | I > +Jii + Nn (6a) 

G,j=2(i\hj\i) + 2(j\hi\j) + AJij - 2Kij + Ntj (6b) 

The one-body term 6, involves the kinetic energy, the in-
trabond electrostatic interactions of the two electrons, and the 
two nuclear charges of the bond. The two-body term <?y con­
tain the electrostatic interactions between the two electrons 
and two nuclear charges of bond / with the similar distribution 
of bondy plus the exchange term. 

This kind of two-body partition of the total energy was 
suggested by England and Gordon,12 referring to localized 
SCF MO's practically obtained through the use of the local­
ization criterion of Edmiston and Ruedenberg.21 Most of their 
applications used the INDO2 2 Hamiltonian. Within the 
framework of INDO Hamiltonian, except on monocentric 
bielectronic interactions, the overlap distribution only plays 
a role through the monoelectronic terms, because of neglect 
of differential overlap. 

Table II. INDO Barriers" 

Molecule 

CH3CH3
6 

CH3OHc 

CH3NH/ 
BH3NH3^ 

AE 

2.20 
0.78 
1.56 
1.97 

A/ 

2.22 
0.64 
1.40 
1.89 

a Energies in kcal/mol; AE = E(least stable) - ^(most stable 
rotamer), using a standard geometry. 6W. England and M. S. 
Gordon, /. Am. Chem. Soc, 93, 4649 (1971). CM. S. Gordon and 
W. England, ibid., 95, 1753 (1973). dOptimized geometry calcula­
tion by M. S. Gordon and W. England, Chem. Phys. Lett., 15, 59 
(1972). 

When going from one conformation to another, all one-bond 
and two-bond <S, and d>y quantities may vary, since the SCF 
localized MO's depend on the conformation. The main coef­
ficients on the concerned bond may change, and the tails on 
the adjacent, vicinal, and further bonds also vary. In a recent 
detailed analysis of 33 INDO SCF calculations with standard 
geometries, England et al.13 showed that an SCF localized MO 
may be built from (a) an invariant contribution on the two 
hybrids of the main bond plus the environment-dependent 
increments on these hybrids, and (b) the position- and envi­
ronment-dependent tails on the adjacent, vicinal,. . . bonds. 

This work shows therefore a transferability of position- and 
environment-dependent tails. 

This fine analysis has not been performed with respect to the 
energy. To understand the variations of d>,- and £,y, England 
and Gordon decompose the // distribution into a contribution 
on the bond itself and contributions involving the tails. This 
decomposition might be performed in terms of fully localized 
MO's, but the analysis has been done in terms of atoms. 

They distinguished the atomic charge distributions nn, 
where M is an atomic orbital, and the diatomic interference (or 
overlap) distribution \x.v (/u e A, v 6 B) according to the 
Rudenberg's partition suggested in his paper on the nature of 
the chemical bond.23 

This quantity defined as, 

/?/(A,B) = E E P, 
MeA a € B 

with 

'"<MI - (v 2 /2)-r - / !A + AB |c) (7a) 

— C^/L-i;/ (7b) 

represents the kinetic and nuclear attraction energy of the 
overlap nv distribution of the MO /'. 

This definition of /3,-(A,B) assumes implicitly that the in­
tegral 

( ' 
- ( V 2 / 2 ) + E ^ A v \ = (S11,/2) GSo" + /V) (8) 

is a rather obscure quantity in the CNDO8 approximations. 
It is expected that the only effects we can obtain with this 

approach in the rotational barrier analysis must appear 
through the interactions of the tails of the localized orbitals, 
taking account of the nonexistence of the overlap effects. 

England and Gordon explained the origin of the rotational 
barriers12-19'20 in terms of changes in one-electron two-center 
interference interactions in the LMO's adjacent to the axial 
bond, the vicinal interference barrier (A/ = 2; A/,) reproducing 
the calculated INDO barrier. They confirmed, of course, the 
preponderant role of the tails of the localized orbitals. 

In Table II one sees some results obtained by these authors 
for some molecules which we will consider later in part III of 
this paper. 

II. A Local Interpretation of Energetic Properties Based on 
a Many-Body Partition of the Molecular Energy in Terms of 
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Bonds. Our procedure constitutes a construction of the energy 
through a many-body expansion; that is, a theoretical sys­
tematic which gives the energy as a sum of one-body, two-body, 
. .. etc., contributions. It allows us to explain the deviations 
from additivity, the effects of substitutions, and the confor­
mational changes. 

In order to explain the energy changes, we isolate invariant 
contributions during the conformational change and we refer 
to: (1) Transferable fragments. The total exact energy is ex­
pressed in terms of matrix elements between these fragments; 
the matrix elements are transferable if they involve transfer­
able fragments in the same relative positions. (2) The classical 
invariants, which are the atoms and/or bonds. Because a 
quantal description cannot be built directly in terms of atoms, 
we tried to join the intuitive interpretations and build the 
transferable fragments on the bonds. (3) An additive expansion 
in terms of one-body, two-body, three-body contributions. The 
perturbative /V-body expansion appears to be a natural 
choice. 

In view of carrying out the construction of such a method 
it is necessary 

(1) To do a partition of the nuclear field and nuclear re­
pulsion energy, as suggested in part IB. 

(2) To build fully localized molecular orbitals on the bonds. 
To do that, the bond MO's are defined from the atomic orbitals 
of only two atoms, and of only one atom if they represent the 
core or lone pairs. According to the hybridization process of 
Del Re24 used in our method, (a) the hybrid orbitals of the 
same atom are orthogonal, (b) the overlap between the hybrids 
of the same bond is maximum, and (c) the overlap between 
hybrids of different bonds are small. 

As a result, for a rotation around an AB single bond, one 
may isolate three groups of bonds. A group I composed only 
by the rotor bond AB, and the groups II and III composed by 
the bonds linked to atoms A and B on opposite sides. The hy­
brids of groups II and III keep their relative positions during 
the rotational change, but the bonds and hybrids of group II 
move with respect to those of group III. Groups II and III are 
composed of transferable pairs of hybrids, defining invariant 
bonds. As concerning the AB rotor bond, if the surrounding 
of A (and/or B) is anisotropic (different substituents), the 
orthogonal hybrid of A (and/or B) along the AB bond is no 
longer directed along the AB axis, and the overlap between the 
two orthogonalized hybrids of the AB bond may change. The 
AB bond is not transferable, except if the surroundings of A 
and B are isotropic. 

The fully localized bond MO's ;' are built from the two-
hybrid Xn of the two atoms A and B. 

i = OX,(A<> + rf/x/B,) (9) 

The MO / is invariant if and only if xM
(A,) and x»(B/) a fe in the 

same relative position and if c, and d{ are kept constant (fixed 
polarities). The use of the ZDO approximation (PCILO-
CNDO scheme18) simplifies the normality condition for the 
localized MO i to the expression 

Ci2 + di2= 1 (9a) 

Equation 9a concerns the orthogonality between the bonding 
MO (' and the antibonding MO /'* on the same bond. 

''• = C/'XM(A,) + dt'x,™ (9b) 

The orthogonality condition can be written, 

CiCt' + did/ = O (9c) 

and one obtains the expression for the antibonding MO's, 

'* = - 4 x „ ( A , ) + CixSBi) (9d) 

which are orthogonal to the whole set of bonding and anti-

bonding MO's. The coefficients c, and d, are calculated by an 
iterative optimization process of bond polarities. They are 
evaluated for the first conformation (reference conformation) 
and kept constant for all conformations. 

In this iterative process a rotational transformation is done 
on the bonding and antibonding MO's of the same bond. With 
these new orbitals, 

the new determinant 4>0 may be expressed, 

<k' = 0o + oti4> I . J 

if one only keeps the first-order coefficient a,-. $(,•'*) represents 
the monoexcited determinant corresponding to the /' bond. 

The expression for the corresponding energy E0 is 

E0'= (00'1//1000/(00'1/Zk0') 

E0' = E0 + 2 E «/ ( 0 o | # k ('*) ) + • • • (90 

and 

BEo'/da, = 2 ^ o | / / | 0 ( '*) ) = 2</|F°|/*> (9g) 

If F0 is the Fock operator for the reference conformation, a 
local Brillouin's theorem is iteratively achieved, 

</|F<°>|/*>=0 (9h) 

That implies a minimization of the energy without authorizing 
any derealization. 

(3) To decompose the zeroth order energy E0 of the fully 
localized determinant 

4>0 = A{\\ ...il...nn) (10) 

in terms of one-bond and two-bond energy contributions 

Eo = E « + LE «/; (H) 

where the one-bond energy 

t, = 2(i\(V2/2) + hi\i)+Jii + Nu (12) 

depends only on the bond / and does not change if the bond is 
invariant. For the cases of the rotation around the AB bond, 
the one-bond energy e, relative to the AB bond may vary if the 
surroundings are not isotropic because the change of relative 
orientation of the two atomic hybrids defining the bond. The 
two-body energy contribution t,j, 

Hj = -2{i\hj\i) + 2(j\hi\j) + AJij - 2Kij + N1J (13) 

depends on the relative position of bonds / and j . If / and j 
belong to the same group, the contribution «,y is invariant and 
transferable from one molecule to the other if standard 
geometries are used. 

(4) To perturb the zeroth order description under its inter­
action with the "excited determinants" built from the set of 
local bonding and antibonding MO's, as done in the classical 
excitonic25 and PCILO schemes.26 This process represents a 
perturbative research of the lowest eigenvalue of the CI matrix 
built from localized MO's, and must be done according to the 
Rayleigh Schrodinger expansion to obtain the correct behavior 
of the energy corrections with the number of particles.27 The 
correction corresponding to each order of the perturbation 
expansion only involves some MO's, and may be referred to 
this subset of body. If this subset is invariant in the geometry 
change (all the concerned bonds belonging to part I for in­
stance), it would be advantageous to obtain a corresponding 
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invariant correction. This invariance is verified with a proper 
choice of the unperturbed Hamiltonian !KQ, which ensures the 
energy denominators to be constant. Jio will keep the same 
spectrum whatever the conformation is. For the pth confor­
mation, 

K ^ = E < * / ( O ) | ^ ( O ) | 0 / ( o ) > k / ( / , ) > < * / ^ | (14) 
/ 

where (P) and (0) represent the/Hh and reference conforma­
tions, respectively, the 0/ ( / , ) 's (resp. 0/(O)) represent the de­
terminants spanning the CI matrix in the pth (resp. zeroth) 
conformation, in the basis of fully localized bonding and an-
tibonding MO's. This definition ensures that 

( • / ' " IWI* /" 1 ) " <0y(/>)|W)|0//>)) 
= <0/<°>i#o(o)k/(o)> 

- (<t>j(0)\7to{0)\<t>jm) for each P, I, and / (15) 

It represents an adaptation of the Epstein-Nesbet definition 
of the unperturbed Hamiltonian.28 It introduces some small 
diagonal terms of the perturbation Hamiltonian "V^) = Ji{p) 

- W 
(4>,c) I <V c> \<t>,-C)) = WWW*) 

- ( ^ C > | % ( P ) | * / ( f | ) (15a) 

These matrix elements introduce some supplementary third-
order corrections. One may understand the physical signifi­
cance of these elements by referring to the diagonal Fock op­
erator matrix elements; for / belonging to a group /, invariant 
in the conformational change, 

(/IFC)IO - <I|F<°>|I> = ( / I E A(A,+ 2/y)|i \ (16) 
\ \j4i I / 

where A(hj + 27,) represents the change (under the confor­
mational change) of the nuclear attraction plus electronic re­
pulsion exerted on the electrons of bond /, by the nuclear plus 
electronic distribution of bonds belonging to the other parts 
of the molecule, with respect to the reference conformation (0). 
The electrostatic neutrality of bonds j , for neutral molecules, 
guarantees that the changes of the external fields on bond / are 
small, and the modifications of the diagonal Fock matrix ele­
ments are actually small. 

In a semiempirical framework, using the CNDO hypothe­
sis,8 the ZDO approximation and the full localization of the 
MO's make possible an exact transferability of the nondiagonal 
Fock matrix elements, Fmn, between two bonds belonging to 
the same group, 

Fmn = (m\ (V2/2) + hm + h„ + 2Jm - Kn, + Un - Kn\n) 

+ E (m\hj + 2Jj - Kj\n) (17a) 

since 

(m\hj+ 2Jj -Kj\n)=0, FmnC> = Fmn<°> (17b) 

Then the excitations appearing in the second-order correction 
are: 

(a) The intrabond single excitations (or polarization con­
tributions) / - • /*. The corresponding contribution is, 22, 
(FnS)1IAEd1*), where 

Fu*= < I | ( V 2 / 2 ) + A, + 7 , . | I * > 

+ Y. d\hj+2Jj-Kj\i*) (18) 
j 

represents the matrix element of the total field on the /7* 
transition distribution, and -AfO' '*) = Fa*

(0) - / V 0 ' -
(//,/*/*)(0) + 2(//*,/7*)(0). After the initial optimization of bond 
polarities, Fu* is zero for the reference conformation; then, in 

the passage to another conformation, F1,* will change according 
to the variation of the field exerted by the moving bonds j (or 
new bonds when one goes from one molecule to another). If 
F,7*<°) = 0, 

^ < P ) = E (i\(hj + 2Jj -Kj)p 

j 

-(hj +2Jj-Kj)°\i*) (19) 

where the modification of the field exerted by the nuclear plus 
electronic distribution of bond / is represented by <5/, 

8j = (hj + 2Jj - KjY - (hj + 2Jj - Kj)0 

Three-body terms appear in the second-order correction as 

(i\8i\i*)(i*\8k\i) 

j k e, - e/* 

where e, represents the diagonal element of the Fock operator. 
This is a well-known result of intermolecular theory; the po­
larization energies deviate from pairwise additivity. 

(b) The delocalization single excitations / —-j* (J ^ /) from 
a bonding MO to an antibonding MO of another bond. In this 
contribution the transfer of the electrons from one bond to 
another is authorized. The sum of these contributions gives the 
delocalization energy Fdei = 22,2,v,F,y*2/A£(,'*) (where 
-AF(,-''*) = FJ*J*W ~ F,/(°) - (ii,j*j*){0)), which is respon­
sible for most of the SCF energy lowering and plays a very 
important role in the conformational energy. Moreover, these 
delocalization single excitation / -* j * effects may be viewed 
in terms of Lowe's hyperconjugation effects when / and j * are 
at opposite ends of the rotor bond; the important role of these 
effects may be anticipated using the Lowe's arguments about 
the molecular orbital explanation for the internal rotation 
barriers about single bonds29 in ethane-like molecules. 

(c) The intrabond double excitations (/ —• /* ) 2 provide an 
intrabond correlation energy, 

(/* i*\ 
' ' / 

where (//*,//*) represents an intrabond doubly excited deter­
minant, and 

AF ( '* '.*) = 2F,-.,-.(°>-2F,7(
0> 

- 2(//,/*/*)<°> + (//,//)(°> + (/*/*,/*/*)«>) 

These contributions concern one-body terms; the only impor­
tant contributions to the conformational energy come from the 
variable bonds belonging to the variable groups. 

(d) The interbond double excitations / —• /*, j —j* are re­
sponsible for the attractive van der Waals dispersion energies 
between bonds i and y; they provide the interbond correlation 
energy, 

(//*,//* )2 

^ intercorrel — ^ L^ Z-

' J*' AE ( j * j*) 

The second-order energy correction is therefore a sum of 
one-body, two-body, and three-body contributions. 

The numerically important contributions in a conforma­
tional change arising from the third-order correction are: (a) 
the delocalization-delocalization interactions which give 
three-body contributions; (b) the delocalization-interbond 
correlation (two-bond contributions); (c) the interbond-in-
terbond correlation contributions which involve three bonds 
i,j, and k; (d) the intrabond-interbond correlation, which is 
a special case (k = /) of the preceding contribution involving 
only two bonds. The explicit decomposition of the energy ob­
tained with a perturbative TV-body expansion in terms of local 
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Table III. Geometries for the (CH3)2XH„_, series (X = C,N,0) 

Molecule 

CH3CH2CH3 

CH3NHCH3 

CH3OCH3 

d(C-H), 
A 

1.09 
1.08 
1.094 

d(C-X), 
A 

1.54 
1.46 
1.416 

d(X-H), 
A 

1.014 

LCXC, 
deg 

111.5 
108 
111.5 

^HXH, 
deg 

109.47 

and transferable fragments (bonds) allows an analysis with 
respect to the i,j, k, . . . p, . . . bond contributions (where i,j, 
k p, . . . represent the bonds) on one hand, and with re­
spect to the «th order correction of the perturbation expansion 
on the other. With the use of this double expansion, the total 
energy can be expressed, 

E = E ( E n(n) + E E tuw + ••• 

+ £ £ • • • L </j..../,..(,,) + ---) (20) 
< </ <p ' 

where SnZ,-«," represents the one-body contributions up to the 
«th order correction, the same meaning for the two-body, the 
three-body, etc., terms. 

The conformational energy change will be written as, 

A£(«./» = E ( E ^i" + E E ^u" + ••• 

+ E E . . . E *ij...A (20 
i <i <p I 

where A£"("•P) means the energy change up to the nth order 
correction involving one-body, two-body, up to p-body con­
tributions. (A£(3'3), for instance, means the energy change due 
to one-body, two-body, and three-body contributions at the 
zeroth-, second-, and third-order correction). 

III. DPCILO Calculations Applied to the Analysis of Rota­
tional Barriers around Single Bonds in the Series of Molecules: 
CHsXHn and Their Superior Homologous (CH3)2XH„_i (X 
= C, N, O). The internal rotation barriers of the series of 
molecules CH3XHn and (CHj)2XHn-, (X = C, N, O) have 
been investigated within the framework of DPCILO-CNDO 
approximation.18 One used the geometrical data given by 

Labarre et al. for the molecular series (CHa)2XHn-]31 (see 
Table III) and a minimal basis of Slater atomic orbitals. All 
the calculations have been done in the rigid rotator hypothe­
sis.31 

The choice of the two series of molecules is based on a double 
purpose: (1) to do an analysis of the origin of barriers in the 
CH3XHn molecules (X = C, N, O) and understand which 
specific effects are responsible for the decrease of the barriers 
in the CH3XHn series (substitution effects), 

CH3CH3 > CH3NH2 > CH3OH 

and (2) to investigate the transferability of contributions in the 
passage from reference systems (CH3XHn) to their corre­
sponding superior homologous (CH3)2XHn_] and the role of 
vicinal, geminal, and long-range interactions in the considered 
series. 

As a first step, we consider the effects of bond polarities on 
the energies and on the internal rotation barriers for the mo­
lecular series CH3XHn (X = C, N, O). The calculations were 
carried out taking two reference conformations, the eclipsed 
(if = 0) and the staggered (<p = 60) ones. The bond polarities 
were optimized for the reference conformation and were kept 
fixed for the other conformations. Next we did calculations 
with optimized bond polarities for each conformation. The 
results are listed in Table IV. One sees that in ethane the 
energies and its barrier are insensitive to the reference con­
formation polarities, the barrier height with fixed polarities 
is the same as that with optimized polarities for each confor­
mation (2.05 kcal/mol). Analogous results are obtained for 
the methylamine and methyl alcohol, the hybrid coefficients 
for the eclipsed and staggered conformation differ at most by 
10~3, but this difference does not affect sensibly the barrier. 
The corresponding barriers taking the eclipsed and staggered 
conformations as reference conformations are respectively 
1.539 and 1.532 kcal/mol for methylamine and 0.786 and 
0.773 for methyl alcohol, to compare respectively to values of 
1.532 and 0.782, corresponding to optimized polarities for each 
conformation. 

Next, we proceed to analyze the rotational barriers of the 
CH3XHn series. The various contributions to the barrier from 
the zeroth, second, and third orders are listed in Table V. 

Rojas J Analysis of Conformational Properties of Molecules 

Table IV. Effects of Bond Polarities on the Energies0 and on the Rotation Barrier6 for the Molecular Series CH3HX,, (X = C,N,0)" 

X = C 

X = N 

X = O 

Bond 

CC 
CH 
E0 

E° + e2 

E° + e2 + e 3 

CN 
CH 
NH 

Nlone pair 
E0 

E° + e2 

£° + e2 + e3 

CO 
CH 
OH 
Olone pair 
E" 
E" + e2 

f + e' + e3 

>p = 0° 

0.707107 
0.713266 

-11768.227 
-11841.165 
-11841.912 

0.684836 
0.712917 
0.738647 
1.0 

-14130.096 
-14198.683 
-14198.122 

0.660416 
0.713402 
0.762076 
1.0 

-17892.419 
-17954.307 
-17953.998 

Eclipsed (y? = 0°) 

^ = 60° 

0.707107 
0.700894 

-11768.460 
-11843.014 
-11843.960 

0.728697 
0.701248 
0.674092 
0.0 

-14130.319 
-14199.971 
-14199.622 

0.750899 
0.700755 
0.647487 
0.0 

-17892.541 
-17954.913 
-17954.784 

AEb 

0.233 
1.849 
2.048 

0.224 
1.288 
1.539 

0.122 
0.606 
0.786 

Hybrid coefficients 

V? = 6 0 ° 

0.707107 
0.713277 

-11768.460 
-11843.011 
-11843.948 

0.684830 
0.713978 
0.738647 
1.0 

-14130.323 
-14199.962 
-14199.654 

0.660407 
0.714701 
0.762055 
1.0 

-17892.555 
-17954.913 
-17954.780 

Staggered (ip -

^p = 0° 

0.707107 
0.700882 

-11768.227 
-11841.163 
-11841.893 

0.728703 
0.700168 
0.674093 
0.0 

-14130.092 
-14198.681 
-14198.117 

0.750908 
0.699430 
0.647513 
0.0 

-17892.405 
-17954.305 
-17954.008 

= 60°) 

AEb 

0.233 
1.849 
2.055 

0.232 
1.288 
1.537 

0.149 
0.608 
0.773 

AEc 

0.233 
1.846 
2.036 

0.227 
1.286 
1.532 

0.149 
0.608 
0.773 

flThe zeroth-, second-, and third-order energies are calculated with bond polarities optimized for the reference conformation, in au. 6The 
barrier AE = £"(eclipsed) - ^(staggered) is given in kcal/mol. c Rotation barrier calculated with bond polarities optimized for eacli conforma­
tion. d The bond polarities refer to the eclipsed and staggered conformations. 
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Table V. DPCILO Rotational Barrier Contributions" of the 
CH3XHn (X = C, N, O) Molecular Series 

CH3CH3* CH3NH2
6 CH3OH6 

Table VI. Two Body Vicinal Contributions to the Energy0 of the 
Eclipsed and Staggered (in parentheses) Forms of the CH3XHn (X : 

C, N, O) Molecular Series6 

AiT0" (zeroth order) barrier 
Second-order correction 
AE polarization 
AE derealization 
AE intrabond-correlation 
AE interbond-correlation 
AEa (zeroth + second order) 

barrier 
Third-order correction 
AE del-del 
AE inter-del 
AE intra-inter 
AE inter-inter 
AE" (zeroth + second + third 

order) barrier 

0.23 
1.62 
0.0 
1.86 
0.0 

-0.25 
1.85 

0.20 
0.29 

-0.19 
0.08 
0.03 
2.05 

0.22 
1.06 
0.0 
1.24 
0.0 

-0.18 
1.29 

0.25 
0.28 

-0.10 
0.06 
0.02 
1.54 

0.12 
0.48 
0.0 
0.56 
0.0 

-0.09 
0.61 

0.18 
0.17 

-0.03 
0.03 
0.01 
0.79 

a All barriers and contributions are given in kcal/mol; Ai? = E (least 
stable) - £(most stable rotamer). ^Experimental barriers in kcal/ 
molare 2.875, 1.97,and 1.07 for CH3CH3, CH3NH2, and CH3OH 
respectively; the corresponding references are, W. J. Lafferty and E. 
K. Plyler,/. Chem.Phys., 37, 2688 (1962); T. Nishikawa. T. Itoh, 
and K.Shimada,ifoi'd., 23, 1735 (1955); E. V. Ivash and D. M. Den-
n ison , /M. ,21 1804 (1953). 

The DPCILO-CNDO approximation gives a small zer-
oth-order contribution to the barrier; the preponderant con­
tributions arise essentially from the second-order correction 
due to the derealization (/ -* /*) single excitations. At this 
stage, the first-order corrected wave function may be expressed 
as a modified single determinant 

<t>o + {i\F\j*)/{t, - (j*) (4 (^*) + <f ( C ) ) « I I l . .. 

/ '/ ' . ..nn\ + 0(2) 

where $(,J*) represents a delocalized (;' -* j*) single excited 
determinant a/+a,</>o, and the localized MO's /' = / + 
((;'\F\j* )/t\ — «j») j * have tails on the other bonds. This result 
gives a direct confirmation of the results obtained by England 
and Gordon in an SCF scheme; the CNDO barrier arises from 
the derealization effects introducing the tails. In that case it 
is clear that the only contribution to the barrier comes from 
the derealization between vicinal CH bonds, the other pairs 
being geminal pairs and therefore invariant. Moreover, in the 
CNDO approximation the matrix element (i\F\j*) between 
nonoverlapping MO's reduces to (i\h\j*); i.e., a purely 
monoelectronic effect called interference energy by Rueden-
berg.23 In spite of the smallness of the zeroth-order contribu­
tion, the repulsive effects are not negligible as well as the in-
terbond correlation contributions, this van der Waals disper­
sion energy diminishes the barrier to a nonnegligible extent. 
In the third-order correction the derealization effects are also 
preponderant, the global third-order correction coming almost 
entirely from the delocalization-delocalization interactions, 
which involve three bonds. 

One can do an analysis of the preponderant contributions 
arising from the zeroth-, second-, and third-order corrections 
with respect to the one-bond, two-bond, and three-bond con­
tributions, with the help of the explicit energy decomposition 
expression given in eq 20 and 21. 

The barrier analysis reveals that the one-body contributions 
to the barrier are zero (£,-Ae,- = 0) in both the zeroth- and 
second-order barriers because the one-body terms remain 
constant (A,«j = cte) from one conformation to the other, as 
implied by the definition of the process; one may notice, how­
ever, that the bond defining the rotation axis which might have 
a varying one-body contribution is constant enough to be 
considered a nonvarying bond. The barrier is then given by the 
two-bond and three-bond contributions (at zeroth-, second-, 

Molecule 
Type of 

interactions 

No. of 
inter­

actions 
Zeroth 
order Derealization 

CH3NH, 

CH ,OH 

C(CH,CH) 
(t) 
7(CH,CH) 
(g) 
C(CH,N i p ) 

C(CH1NH) 
(t) 
7 ( C H , N i p ) 
(g) 
7(CH1NH) 
(g) 
C(CH,O i p) 

C(CH1OH) 
(t) 
7 ( C H , O i p ) 
(g) 
7(CH,OH) 
(g) 

8.994 
(8.739) 
8.752 
8.841 

14.841 
(14.841) 

8.705 
(8.274) 
14.841 

(14.841) 
8.306 

(8.465) 
13.243 

(13.243 
8.385 

(7.828) 
13.243 

(13.243) 
7.883 

(8.100) 

(-

(-

(-

(-

(-

(-

(-

(-

(-

-3.832 
-6.534) 
-1.869 
-0.829 
-3.581 
-4.811) 
-3.092 
-5.884) 
-1.366 
-0.776) 
-1.762 
-0.671) 
-3.213 
-3.878) 
-2.876 
-5.077) 
-1.053 
-0.735) 
-1.581 
-0.733) 

"All contributions are given in kcal/mol. 6 Zeroth- and second-
order terms. 

and third-order corrections), 

n = 0 V i <j i <j<k I 

In principle, the two-body terms may be divided into geminal, 
vicinal, and long-range interactions, according to the relative 
position of the concerned bonds. The geminal interactions re­
main constant during the rotation if both bonds and their rel­
ative positions are constant. The only possible exception in our 
case must involve the 

bond, which may change if the X atom is anisotropic. For in­
stance, the geminal H-C-N (resp. O) interaction only varies 
by 0.02 kcal/mol (resp. 0.04). The only significant two-body 
interactions are therefore the vicinal ones. 

Different types of vicinal interactions appear in the con­
sidered rotational conformations (eclipsed and staggered 
conformers). One can distinguish these interactions making 
use of Ito's32 conventional nomenclature proposed in his em­
pirical additive systematic. For the vicinal two-bond interac­
tions one uses four symbols c, t, y, and g (cis, trans, "gamma", 
and gauche, respectively) which define the type of interaction 

For 

ip = 0° —*• cis interaction 

(P = 180° —»• trans interaction 

<p = ±120" —*• "gamma" interaction 

ip = ±60° —*• gauche interaction \ ^ 

according to the relative position of the two involved bonds, 
defined by the dihedral angle ^(123,234). Positions c and y 
occur in the eclipsed conformations, while t and g occur in the 
staggered ones. The same symbols are used for the three-body 
interactions; the geminal interactions are represented by 
"gem". 

HIA (1). Role of the Vicinal Interactions (Eclipsed and 
Staggered Conformations) in the CH3XHn (X = C, N, O) 
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Molecular Series. The various zeroth- and second-order two-
body vicinal interactions have been reported in Table VI. One 
may notice that the zeroth-order contributions are larger in 
absolute value, but poorly stereospecific, especially when lone 
pairs are involved. (This conclusion is only valid for the CNDO 
approximation.) 

Although smaller in absolute values, the second-order de-
localization two-body terms present strong variations and are 
responsible for the barrier. For instance, the (CH, XH) in­
teractions become twice as large when going from cis to trans 
positions. 

The variation of the delocalization two-body correction is 
easily understood from the simplified case of two nonpolar 
bonds. With the arbitrary choice of the phase factor of <&*, one 
obtains 

Table VII. Three-Body Terms Involved in the Rotational Barrier 
of Ethanea 

-yx 

^T V2 ^ l 

(<P\ \h\<P2*) = V 2 [ - < * l H * 3 > + <A,|A|A4) 
-(X2\h\X3)+ <A2|A|A4>] (22a) 

which reduces to 

<Pi|A|*2*> =+V 2 ( ( A - ^ l X , ) - < * 2 | / i | * 3 » (22b) 

if the bonds are similar ({X,\h \X3) =* <A ,
2 |/i|A'4».Ineq22b, 

(A" 11A 1^4) and (A2|A|.Y2) occur with opposite signs and the 
molecular integral will be larger if (Ai|A|A4) is smaller; 
therefore, the second-order correction increases when <p varies 
from Oto 180°, 

( » l N g 2 » ) 2
0 ( V l | A | y 2 * ) 2 ^ 

|ei - e2*| |«i - £2*1 
The delocalization is stronger by 3 kcal/mol when the bonds 
are trans and therefore more distant from each other. The 
decrease by 1 kcal/mol of the (CH, XH) interaction when 
going from 7 to g positions does not compensate the stabili­
zation due to the trans position. 

The second-order dispersion two-body terms are less im­
portant in absolute value (in full agreement with ab initio 
calculations33) and less stereospecific. The transition dipole-
transition dipole interaction (U*,jj*) may be written within 
the same hypothesis 

(U*,jj*) = V4 (gi3 - g24 ~ g]4 - g23) 

where gpq is the Coulombic integral (pq\pq) between the 
atomic orbitals p and q. In this integral the (#14 -I- £23) inte­
grals are slightly larger than (g ] 3 + g24) and favor the compact 
cis form, in agreement with the expected dependence of a di-
pole-dipole interaction on the distance. 

In the heteroatomic compounds, two essential modifications 
occur with respect to ethane: (i) one or two CH bonds are re­
placed by an XH bond (X = O or N); and (ii) two or one CH 
bonds are replaced by a lone pair. The vicinal (CH, XH) 
two-body terms do not differ strongly from the corresponding 
(CH, CH) two-body terms, especially at the zeroth-order level 
(for instance, c(CH, CH), c(CH, NH) , and c(CH, OH) are 
respectively equal to 8.99, 8.71, and 8.39 kcal/mol). The de-
localization two-body terms are more different (3.83, 3.09, and 
2.88 kcal/mol) for the same series. Their changes in the 
rotation from cis to trans position are, respectively, 2.70, 2.79, 
and 2.20 kcal/mol, which cannot explain the decrease of the 
total delocalization contribution to the barrier (1.86, 1.24,0.56 
kcal/mol). This decrease is due to the lone pairs. The (CH,Xip) 
delocalization two-body terms involving the lone pairs are 
much smaller and less stereospecific, as appears from Table 
VI (in the c -»• t transformation, (CH,N l p ) goes from -3 .58 
to -4 .81 kcal/mol, (CH,Oip) goes from -3 .21 to -3 .88 

(CH1CC1CH) 

(CH,CH,CH) 

Eclipsed form 

Type of 
interaction 

W 

S 
>-J 

K 

Energy 

-0.070 

-0.039 

-0.450 

0.271 

No. 

3 

6 

12 

6 

Staggered form 

Type of 
interaction 

^ 

W 

> - \ 

> f 

Energy 

-0.055 

-0.036 

-0.424 

0.174 

No. 

3 

6 

12 

6 

0In kcal/mol. 

kcal/mol, while (CH,CH) varies from -3 .82 to -6 .53 kcal/ 
mol). This decrease of stereospecificity may be understood, 
since in that case: (i) (<p2|A|<pi*) disappears if ^1 is the lone 
pair; there is no delocalization towards the lone pair, (ii) 
<?i|A|tf2*> reduces to < ^ | / i | ^ * > = ( l /> /2 ) [-(A2IAlA3) 
+ (A2|A|A~4)], and <A"2|A|A4> is less stereospecific than 

Ip 

Vi Ŝ 
.V 2 

(Ai|A|A4> in the (CH,CH) case. The introduction of lone 
pairs explains the decreases of the barrier when going from 
ethane to methylamine and methyl alcohol. 

IHA (2). Role of Three-Body Terms. The role of three-body 
terms is exemplified in the case of ethane. They practically 
reduce to the delocalization-delocalization third-order cor­
rection. The only varying three-body terms must imply two 
vicinal CH bonds; the third bond may be the CC bond or an­
other CH bond. One gets, therefore, four types of three-body 
terms for each conformation, which are given in Table VII. 

One may notice that (i) the intermediate C-C bond is less 
important than the CH bonds, (ii) the trans interactions are 
less stabilizing than the cis ones, contrary to the two-body 
terms, (iii) the final stabilization of the staggered form by the 
three-body terms (by 0.29 kcal/mol) is essentially due to the 
difference between g,g,gem (0.174) and 7,7,gem (0.271) 
(CH,CH,CH) interactions (last line of Table VII). One may 
easily explain why the trans interactions are less stabilized than 
the cis ones by considering the corresponding third-order 
corrections. In the following diagram, 

\ 3 /2 

and its contribution 

(<P2\h\<P3*}(tp2\h | <vi M Vi IA | V 3 * ) 

-(3*) 

V2)- Turning back to the 

(«2 - «3*)(«1 

the stereospecific element is (<p\\h 
AO's, as in eq 22a, 

(ViIAk2) = V2 [<A, |A|* 3) - <A,|A|A-4) 
+ <A-2|A|A-3> + (X2\h\XA)] 

which is larger for the cis position. 
HIA (3). Transferability of Vicinal Interactions from the 

CHaXHn to the CHjXHn-1CH3 Series. In such compounds 
the empirical potentials of the Westheimer type34 frequently 
assume that in the rotation around a single bond, the energy 
change is equal to the sum of the rotational barrier of the basic 
compound CH3XH,,, plus the variation of the long-range in-

Rojas I Analysis of Conformational Properties of Molecules 
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Table VIII. DPCILO Barrier Contributions" of the (CH3)2XH„_, (X = C,N,0) Molecular Series 

Rotation 

AE0 (zeroth order) barrier 

Second-order correction 
Ai? polarization 
AE derealization 

AE intrabond-correlation 
AiT interbond-correlation 
AE (zeroth + second order) barrier 
Third-order correction 
AE del-del 
AE inter-del 
AE intra-inter 
AE inter-inter 
Ai? (zeroth + second + third 

barrier 
order) 

CH3CH2CH3 

(0 ,0 ) - (60 ,0 ) 

0.42 
(0.21 + 0.21)» 

1.71 
0.0 
1.88 

(1.97 - 0.08)* 
0.0 

-0.18 
2.13 
0.08 
0.17 

-0.16 
0.33 
0.02 
2.21 

(0 ,0 ) - (60 ,60) 

1.36 
(0.43 + 0.95)* 

3.87 
0.0 
4.49 

(4.0 + 0.50)* 
0.0 

-0 .62 
5.23 
0.01 
0.10 

-0 .33 
0.19 
0.06 
5.24 

CH3NHCH3 

(0 ,0 ) - (60 ,0 ) 

0.74 
(0.23 + 0.50)* 

1.11 
0.01 
1.20 

(1.33 - 0 . 1 3 ) * 
0.0 

-0 .10 
1.84 
0.14 
0.17 

-0.06 
0.03 
0.01 
1.97 

(0 ,0 ) - (60 ,60) 

2.83 
(0.52 + 2.36)* 

3.31 
0.01 
3.93 

(2.66+ 1.25)* 
0.0 

-0.63 
6.13 

-0.25 
-0 .33 
-0.14 

0.19 
0.05 
5.88 

CH3OCH3 

(0,0) - (60,0) 

0.54 
(0.11 +0.43)* 

0.46 
0.01 
0.45 

(0.57 - 0 . 1 2 ) * 
0.0 
0.0 
1.00 
0.11 
0.12 
0.0 
0.0 
0.0 
1.11 

(0 ,0) - (60 ,60) 

2.26 
(0.26 + 2.02)* 

2.05 
0.02 
2.45 

(1.20+ 1.29)* 
0.0 

-0 .42 
4.31 

-0.41 
-0 .53 
-0 .02 

0.13 
0.03 
3.90 

2AIl barriers and contributions are given in kcal/mol; Ai? = E(least stable) -i?(most stable rotamer). *The two numbers between paren-
entheses represent, respectively, the vicinal and long-range contributions. 

Table IX. Two-Body Vicinal Contributions to the Energy2 of the 
Eclipsed and Staggered (in parentheses) Forms of the 
(CH3)2XH„_, (X = C,N,0) Molecular Series* 

Molecule 

CH3CH2CH 

CH3NHCH3 

CH3OCH, 

Type of 
interaction 

C(CH,CC) 
(t) 
C(CH,CH) 

(O 
T(CH1CC) 
(g) 
T(CH,CH) 
(g) 
C(CH1N i p ) 

C(CH,NC) 
(0 
C(CH1NH) 
(t) 

T (CH,N i p ) 
(g) 

T(CH1NC) 
(g) 
T(CH1CH) 
(g) 
C(CH1O1n) 
(O p 

C(CH1CO) 
(t) 

T(CH1O i p ) 
(g) 
T(CH1CO) 
(g) 

No. of 
inter­

actions 

1 

2 

2 

4 

1 

1 

1 

2 

2 

2 

2 

1 

4 

2 

Zeroth 
order 

8.49 
(8.36) 
9.04 

(8.97) 
8.37 

(8.40) 
8.78 

(8.87) 
14.84 

(14.84) 
8.04 

(7.72) 
8.68 

(8.26) 
14.84 

(14.84) 
7.74 

(7.83) 
8.29 

(8.44) 
13.24 

(13.24) 
7.34 

(7.01) 
13.24 

(13.24) 
7.04 

(7.14) 

Derealization 

-2 .60 
(-6.46) 
-3 .82 

(-6.50) 
-2 .03 

(-0.46) 
-1 .85 

(-0.83) 
-3 .54 

(-4.76) 
-2 .56 

(-6.16) 
-3 .06 

(-5.81) 
-1 .36 

(-0.76) 
-2 .02 

(-0.58) 
-1.75 

(-0.67) 
-3.25 

(-3.89) 
-2 .74 

(-5.43) 
-1.05 

(-0.75) 
-1.87 

(-0.79) 
a All contributions are given in kcal/mol. * Zeroth- and second-

order terms. 

teratomic interactions; for two simultaneous rotations, the 
energy change would be the sum of the two elementary barriers 
plus the change in long-range interactions between the terminal 
methyl groups. Our methodology may check the validity of 
these assumptions. When going from CHsXHn to 
CH3XH„-iCH3, (i) one should find some interactions already 
involved in the former compounds (for instance, the (CH,XH) 
interaction which played the key role in the rotational barrier), 
and one may verify their transferability; (ii) an XH bond is 
replaced by an XC bond and one may hope that due to similar 
polarities their interactions are not too much different, allowing 

a global transfer of vicinal interactions and therefore of the 
basic rotational barrier; and (iii) the method gives explicitly 
the long-range interactions, the role of which may be dis­
cerned. 

Three conformations have been studied, the fully staggered 
one (0,0) which is the most stable, the eclipsed staggered one 
(0,60) corresponding to a (60,0) single rotation around a C-X 
bond, and the fully eclipsed form (60,60) corresponding to two 
simultaneous rotations around the C-X bonds, and which 
should be the highest energy conformation. The (0,0) —- (0,60) 
and (0,0) —• (60,60) energy differences are given in Table VIII 
as well as the different contributions from the zeroth-, second-, 
and third-order corrections. With respect to the reference series 
(CHsXHn), the contributions from the zeroth order are sig­
nificantly larger, and represent 30-50% of the final energy 
change. A new zeroth-order repulsive effect appears in these 
compounds, which will be attributed to the repulsion between 
the methyl groups through a detailed analysis of two-body 
terms. The other essential contribution arises from the sec­
ond-order correction, essentially from the derealization effect 
(although the dispersion interbond correlation energies are not 
negligible). The third-order correction diminishes the barrier 
to some extent. 

Turning back to a many-body analysis, one may verify first 
the transferability of the two body (CH,XH) terms which 
appeared in the basic compounds. Comparing Tables VI and 
IX, one sees that this transferability is almost perfect. For in­
stance, the zeroth- and second-order derealization two-body 
terms are, respectively, 8.99 and -3.83, 9.04 and -3.82 for the 
cis (CH,CH) interactions in ethane and propane, 8.74 and 
—6.53, 8.77 and —6.50 for the trans interactions in the same 
compounds, 8.71 and -3.09, 8.68 and -3.06 for cis (CH,NH) 
interactions in methyl- and dimethylamines, 14.84 and —1.37, 
14.84 and -1.36 kcal/mol for the y (CH,N]p) interactions in 
the same compounds. 

One may wonder whether the X-C and X-H bonds are 
approximately equivalent in the vicinal two-body terms as 
implicitly assumed by empirical systematics with transfer 
rotation barriers. Again the comparison of Tables VI and IX 
show that this equivalence is only approximate. For instance, 
the zeroth- and derealization second-order two-body terms 
are 8.49 and -2.60 for cis (CH,CC) instead of 8.99 and -3.83 
kcal/mol for cis (CH,CH), 8.04 and -2.56 for cis (CH5NC) 
instead of 8.71 and -3.09 for cis (CH,NH). However, some 
cancellations occur and the final sum of all vicinal interactions 
are almost the same in basic and heavier compounds. For in-
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Table X. Two-Body Long-Range (CH1CH) Interactions for the (CH3)2XH„_, Molecular Series" 

Molecular 
conformation 

(0,0) 

(0,60) 

(60,60) 

Type of 
interaction 

tt 
gg 
gg' 
gt 
Ct 
t7 

gc 
g7 
g7' 
CC 

77^ 
77' 
C7 

No. of 
interactions 

1 
2 
2 
4 
1 
2 
2 
2 
2 
1 
2 
2 
4 

X 

Zeroth 
order 

0.13 
0.28 
0.21 
0.17 
0.25 
0.14 
0.40 
0.18 
0.17 
1.14 
0.14 
0.14 
0.26 

= C 

Del 

-0.09 
-0 .06 
-0 .0 
-0.31 
-0.88 
-0.01 
-0.06 
-0.003 
-0.25 
-0.003 
-0.04 
-0.07 
-0 .18 

X 

Zeroth 
order 

0.29 
0.64 
0,46 
0.37 
0.56 
0.30 
0.90 
0.39 
0.37 
2.81 
0.30 
0.30 
0.58 

= N 

Del 

-0.08 
-0.21 
-0.01 
-0.59 
-1.65 
-0.001 
-0.23 
-0.01 
-0.47 
-0.05 
-0.08 
-0.16 
-0.28 

X = 

Zeroth 
order 

0.33 
0.65 
0.48 
0.40 
0.57 
0.33 
0.88 
0.41 
0.40 
2.55 
0.34 
0.33 
0.58 

^O 

Del 

-0.11 
-0.28 
-0 .02 
-0.55 
-1.52 
-0.01 
-0.30 
-0.01 
-0.45 
-0.12 
-0.09 
-0.17 
-0.24 

a Zeroth- and second-order terms in kcal/mol. 

stance, at the zeroth order, 

Af0^CH3NHCH3) = 0.26 kcal/mol 

A£0
V(CH3NH2) = 0.22 kcal/mol 

and at the second order, 

A£2,dei
v(CH3NHCH3) = 1.33 kcal/mol 

A£2,del
v(CH3NH2) = 1.25 kcal/mol 

The transfer of the basic rotation barrier into larger compounds 
may therefore introduce an error of a few tenths of a kilocalorie 
per mole. 

HIB. The Role of Long-Range (Third Neighbor Bonds) In­
teractions in the Rotational Barriers of the CH3XHn-ICH3 
Series. Table X gives the various types of (CH,CH) long-range 
interactions, which are distinguished using the symbols ap­
pearing in the vicinal interactions. The reference plan is this 
which involves the three heavy atoms. 

The couple of bonds (1-x) and (3->>) attached to atoms 1 
and 3, for instance, will be defined by the position of (\-x) 

<>^> 

bond with respect to (2-3), and (3-y) bond with respect to 
(2-1). For the two bonds not placed on the plane (123), one 
must distinguish whether they are located on the same side of 
the (123) plane or on opposite sides. The prime ( ' ) symbol will 
be attached to the couple of bonds placed on opposite sides. 

The relative role of the long-range interactions with respect 
to the vicinal interactions have been summarized in Table X, 
showing (i) that these effects are of the same order of magni­
tude, and (ii) that the long-range effects are mainly zeroth-
order repulsive effects, while the vicinal interactions are es­
sentially due to the derealization. The detailed values of 
two-body long-range interactions given in Table X follow the 
expected dependence on the relative position of the concerned 
bonds. 

The stronger interaction concerns the (c,c) couple occurring 
for the (60,60) conformation (1.14 kcal/mol) in propane at 
the zeroth order, the (t,t) interaction is the lowest one (for the 

(c, c) 
\ 

(C, t ) (t, t) 

(0,0) conformation of propane, 0.13 kcal/mol), while the (c,t) 
interaction presents an intermediate value (0.25 kcal/mol). 

One may also verify from this theoretical approach the ad-
ditivity of rotation barriers in a Westheimer potential sys­

tematic. If one keeps only two-body terms, one may write 

A£[(0,0) — (60,60)] = £ A£, / [(0,0) -* (60,60)] 

But, 

E A£,/[(0,0) 
U 

+ 5 A£,7'[(0,0) — (60,60)] 

(60,60)] = £A£//-[(0,0)-(0,60)] 

+ Z A£,/[(0,60) —(60,60)] 

The vicinal interactions around the X(2)-C(3) bond do not 
depend on the rotation around the C(l)-X(2) bond, and 
therefore, 

E AEy" [(0,60) — (60,60)] = £ A£,/[(0,0) — (0,60)] 
•J U 

Hence, 

Af [(0,0) — (60,60)] = 2 E A£,/[(0,60) — (60,60)] 

+ E A£,7'[(0,0) — (60,60)] 
<j 

since S,yKA£y [(0,60) -»• (60,60)] is almost the rotation barrier 
A£(basic) for the basic compounds. As verified previously, one 
has, 

A£[(0,0) — (60,60)] = 2A£(basic) 

+ Z A£y'[(0,0) — (60,60)] 
U 

At the second-order level this is almost perfectly verified. 
HIC. Rotation Barriers in the Series X3B-NY3 (X, Y = H, 

F). As a further example, we have chosen the series of borazane 
and the perfluoro derivatives, since the analysis in terms of 
atoms and atomic interactions10 gives a rather strange role to 
the bonded interactions and to the X-Y, N-X, and B-Y in­
teractions. Table XI reproduces the various contributions of 
the perturbation series, showing a small zeroth-order contri­
bution as in the basic barriers studied before; the main con­
tribution again arises for all compounds from the second-order 
correction and essentially from the derealization effect. 

The role of vicinal and "long-range" interactions have been 
reported in Table XI (long range meaning only the interactions 
with the lone pairs which play the role of bonds besides the 
vicinal bonds). One sees that the lone pairs play a very im­
portant role, the Fip - • BH* or BF* derealization increases 
the barrier in F3N-BH3 and F3N-BF3, while the F l p — NH* 
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Table XI. DPCILO Rotational Barrier Contributions^ of the BH3NH3 and Its Perfluoro Derivatives BH3NF3, F3BNH3, and F3NBF3 

Molecule 

AE0 (zeroth order) barrier 

Second-order correction 
AE pol 
AE del 

AE intrabond-correlation 
AE interbond-correlation 
AE (zeroth + second order) barrier 
Ihird-order correction 
AE del-del 
AE inter-del 
AE intra-inter 
AE inter-inter 
AE (zeroth + second + third order) 

barrier 

BH3NH3 

0.17 
(0.17 + 0.00)6 

1.39 
0.0 
1.64 

(1.64 + 0.00)* 
0.0 
0.0 
1.56 
0.26 
0.28 

-0 .13 
0.08 
0.04 
1.82 

F3BNH3 

0.18 
(-0.30 + 0.48)6 

0.57 
0.0 
0.77 

(1.20 -0 .43 )6 
0.01 

-0.21 
0.74 
0.09 

-0.09 
-0.05 

0.06 
0.03 
0.83 

F3NBH3 

0.25 
(0.09 + 0.16)6 

1.56 
0.0 
1.80 

(1.29 + 0.51)6 
0.0 

-0.25 
1.81 

-0.40 
-0.35 
-0.20 

0.10 
0.05 
1.41 

F3NBF3 

0.05 
(0.05 +0.00)6 

0.54 
0.0 
0.77 

(0.42 + 0.35)6 
0.0 

-0 .23 
0.58 

-0.20 
-0.20 
-0 .12 

0.09 
0.04 
0.38 

aThe energies in kcal/mol; the CNDO/2 barriers are 1.94, 0.94, 1.48, and 0.70, respectively. See M. C. Bach, F. Crasnier, J. F. Labarre, and 
C. Leibovici,/. MoI. Struct., 16, 89 (1973). 6 The two numbers in parentheses represent respectively the vicinal and long-range interactions. 

derealization decreases it in F3B-NH3. The anomalous be­
havior of that compound in Labarre's analysis appears at this 
level in our scheme. The third-order correction also plays an 
important role, decreasing the F3N-BH3 barrier under the 
value for BH3-NH3 and giving finally the sequence obtained 
from a variational SCF-CNDO calculation. The important 
third-order correction is again a derealization effect (del-del 
correction) involving three-bond contributions which are rather 
difficult to analyze. This series shows both the already noticed 
leading role of the derealization effects (mainly between 
vicinal bonds) and the importance of long-range interactions 
and three-body effects. 

Conclusions 
(1) The choice of bond MO's and of a perturbative calcu­

lation of the energy allows one to study through a quantum 
mechanical approach the theoretical foundations of the em­
pirical additive systematics and refined empirical potentials. 
The PCILO scheme in its differential version allows a many-
body partition of the energy in terms of bonds and exhibits 
one-body bond energies, two-body interactions between vicinal 
or long-distance bonds, three-body corrections, etc. The nu­
merical values are not expected to give the values of the em­
pirical systematics for several reasons, (a) The empirical values 
and the theoretical choices have some arbitrariness;16 one may, 
for instance, include two-body terms between adjacent bonds 
(or geminal atoms) into the one-body terms relative to these 
bonds (or the central atom) in a series of compounds for which 
these adjacent bonds always occur. The same is true for the 
three-body terms, which may be converted into two-body terms 
(the three-body H-C-C-H interaction may be attributed to 
the (CH2CH) two-body terms), (b) The empirical systematics 
work besides the sum of the atomic energies, while the theo­
retical systematics do not exhibit the atomic energies. However, 
the theoretical approach reveals that the one- and two-body 
terms are well transferable from one molecule to another and 
the sum of the vicinal interactions, which give rise to the 
rotation barriers in the elementary compounds CH3XHn, is 
almost exactly equal to the sum of the vicinal interactions oc­
curring in the heavier compounds CH3XHn- 1CH3. These 
results validate the transfer of rotation barriers if one adds the 
new "long-range" two-body interactions, as done in the 
Westheimer type potentials. It is possible, if one carefully ex­
amines the content of a quantum mechanical energy, to find 
a hidden structure which parallels the well-known intuitive 
systematics of the chemist. For the wave functions and elec­
tronic density, the concept of localized electron pairs has re­
ceived a full confirmation from theoretical studies.35 A detailed 
analysis of transferable environment-dependent tails of MO's 

is even possible.13 An analogous justification is possible for the 
energy. 

(2) The a posteriori decomposition of the quantum me­
chanical energy in terms of atoms does not bring much infor­
mation for an understanding of conformational energy, since 
it requires the knowledge of the variational density matrix, 
which a priori depends on the whole molecule. The perturba-
tive-bond localized approach does not meet with the difficulties 
of the atomic partition; the rotation barrier, for instance, es­
sentially appears from derealization effects between vicinal 
bonds as may be expected from intuition, since the moving 
elements are the vicinal bonds. 

If one decomposes the (ip\ | F | ^ * > matrix element in terms 
of atoms, one will get contributions from the vicinal atoms 

1 4 

f\ /Vi 
2 3 

(1-4) (which move), but also from the geminal (1-3,2-4) and 
bonded atoms (2-3), which have constant relative positions. 
But the contribution due, for instance, to a (2-3) diatomic 
integral may go through the bond matrix element (<p\\F\<(>2*) 
without involving the intermediate bond. Our bond analysis 
attributing the phenomenon to the vicinal bond interactions 
explains the puzzling role of "bonded" and geminal atomic 
interactions exemplified by Labarre and co-workers in a large 
series of compounds. 

This perturbative (additive) calculation of the energy sup­
ports the conclusions of Christiansen and Palke36 concerning 
the orthogonality effects between the CH bond orbitals on 
opposite ends of the molecules. It confirms also the conclusion 
reached by Gordon and England through an a posteriori 
analysis of the SCF variational result; the CNDO rotational 
barriers are due to the derealization effects between vicinal 
bonds, and to the monoelectronic part of the Hamiltonian. Our 
approach does not require either the first variational SCF 
procedure or the relocalization variational step. Moreover, it 
allows us to distinguish between the various physical phe­
nomena which may occur between the bonds, in a language 
derived from the theory of intermolecular forces. Whatever 
the limits of the CNDO Hamiltonian are, we think it is inter­
esting to see through a localized approach the detail content 
and building up of the CNDO energy (and energy changes)37 

and the ways followed to reproduce experiment. Moreover, the 
exploit of cheap semiempirical methods in view of obtaining 
qualitative information about conformational problems may 
be helpful for their physical understanding. 
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lobes5 used in ref 1, should be adequate to show up any de­
pendence of the general results on the kind of basis functions 
used. It was also our interest to explore the capabilities of the 
VB method in studying the 7r-electron excited states (singlet 
and triplet) of such an important aromatic system as benzene, 
even when restricted to the use of a minimal basis set. The good 
agreement with experiment obtained for the ionization po­
tentials (IP's) of H 2 S 6 prompted us to perform theoretical 
calculations on the IP's of benzene. The. next section briefly 
describes the method of calculation. Section 3 is concerned with 
the results obtained for the ground state; a comparison with 
the results of Norbeck and Gallup1 is also given. In section 4 
the results for the excited states and the ionization potentials 
are presented and discussed. General conclusions are contained 
in the last section. 
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Abstract: 7r-Electron ab initio valence-bond calculations for ground and singlet and triplet excited states of benzene have been 
performed using two minimal basis sets (STO, GTO). Vertical ionization potentials, atomization, and resonance energies have 
also been computed. By means of a population analysis the results have been interpreted and discussed in terms of individual 
and symmetry VB structures. Comparisons with previous semiempirical and ab initio calculations are presented. 
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